Comparative assessment of electronic nicotine delivery systems aerosol and cigarette smoke on endothelial cell migration: The Replica Project

Did you encounter a typo?

We are human, after all.

Contact us now and we will arrange it as soon as possible

Acknowledging CoEHAR in your work

If CoEHAR training and education, events, resources, equipment or staff have helped your project, we appreciate an acknowledgement in your papers, articles, presentations, posters, blog post with a citation and/ or link. It helps us to spread the word about our services and demonstrate our ongoing value to our Funders.

If you wish to cite CoEHAR in a research paper or presentation, use the following sample text:

We wish to thank the Center of Excellence for the Acceleration of Harm Reduction (CoEHAR, University of Catania, Italy- COE01-05) for assisting our project with the resources provided.

Massimo Caruso,Rosalia Emma,Alfio Distefano,Sonja Rust,Konstantinos Poulas,Antonio Giordano,Vladislav Volarevic,Konstantinos Mesiakaris,Silvia Boffo,Aleksandar Arsenijevic,Georgios Karanasios,Roberta Pulvirenti,Aleksandar Ilic,Angelo Canciello,Pietro Zuccarello,Margherita Ferrante,Riccardo Polosa,Giovanni Li Volti


Cigarette smoking is associated with impairment of repair mechanisms necessary for vascular endothelium homeostasis. Reducing the exposure to smoke toxicants may result in the mitigation of the harmful effect on the endothelium and cardiovascular disease development. Previous investigations evaluated in vitro the effect of electronic cigarette (EC) compared with cigarette smoke demonstrating a significant reduction in human umbilical vein endothelial cells (HUVECs) migration inhibition following EC aerosol exposure. In the present study, we replicated one of these studies, evaluating the effects of cigarette smoke on endothelial cell migration compared with aerosol from EC and heated tobacco products (HTPs). We performed an in vitro scratch wound assay on endothelial cells with a multi-center approach (ring-study) to verify the robustness and reliability of the results obtained in the replicated study, also testing the effect of aerosol from two HTPs on endothelial cells. Consistently with the original study, we observed a substantial reduction of the effects of aerosol from EC and HTPs on endothelial cell migration compared with cigarette smoke. While cigarette smoke reduced endothelial wound healing ability already at low concentrations (12.5%) and in a concentration-dependent manner, EC and HTPs aerosol showed no effect on endothelial cells until 80%–100% concentrations. In conclusion, our study further confirms the importance of EC and tobacco heated products as a possible harm reduction strategy for cardiovascular diseases development in smokers.